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Abstract—Multi-view clustering has attracted increasing attention in
multimedia, machine learning and data mining communities. As one kind
of the essential multi-view clustering algorithm, multi-view subspace
clustering (MVSC) becomes more and more popular due to its strong
ability to reveal the intrinsic low dimensional clustering structure hidden
across views. Despite superior clustering performance in various ap-
plications, we observe that existing MVSC methods directly fuse multi-
view information in the similarity level by merging noisy affinity matrices;
and isolate the processes of affinity learning, multi-view information
fusion and clustering. Both factors may cause insufficient utilization of
multi-view information, leading to unsatisfying clustering performance.
This paper proposes a novel consensus one-step multi-view subspace
clustering (COMVSC) method to address these issues. Instead of di-
rectly fusing multiple affinity matrices, COMVSC optimally integrates
discriminative partition-level information, which is helpful to eliminate
noise among data. Moreover, the affinity matrices, consensus represen-
tation and final clustering labels matrix are learned simultaneously in a
unified framework. By doing so, the three steps can negotiate with each
other to best serve the clustering task, leading to improved performance.
Accordingly, we propose an iterative algorithm to solve the resulting opti-
mization problem. Extensive experiment results on benchmark datasets
demonstrate the superiority of our method against other state-of-the-art
approaches.

Index Terms—Multi-view Clustering, Subspace Clustering, Data Fu-
sion.

1 INTRODUCTION

T RADITIONAL clustering methods usually use single
kinds of features to measure the similarity of samples.

As well known, the individual feature is insufficient for
depicting data points. In contrast, different features often
contain complementary information, which could be of ben-
efit to exploring the underlying structure of data [1], [2],
[3]. Therefore, multi-view clustering (MVC) has attracted
attention in feature selection, data mining and many other
machine learning communities [4], [5], [6], [7], [8]. MVC
aims to categorize similar data points into the same cluster
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and dissimilar points into different groups by combining
the available multiple feature information and searching for
consistent clustering results across different views [9], [10],
[11], [12], [13], [14], [15].

Researchers have proposed numerous multi-view clus-
tering methods in recent years. Yang et al. [16] summarize
multi-view clustering methods into four categories in terms
of the mechanisms they base. The first category is the co-
training strategy. This kind of algorithm reaches a consensus
by iteratively exploiting prior knowledge or information
learned from other views. There are two representative
method: co-training multi-view spectral clustering [17] and
co-regularized multi-view spectral clustering [18]. The sec-
ond category refers to multi-kernel clustering [12], [19], [20],
[21], [22]. Unlike the other multi-view clustering methods,
whose inputs are original data matrices, the multi-kernel
inputs are commonly the base kernel matrices. The critical
point of multi-kernel clustering is reaching a consistent
result by extracting a common structure from multiple k-
ernels. For example, Zhou et al. [23] designs a novel multi-
kernel clustering method based on the neighbor kernel and
subspace segmentation, which not only reveals the inherent
structure among multiple kernels but removes the noise and
outliers.

The third perspective is the multi-view graph cluster-
ing. This kind of method finds a unified graph and then
performs spectral clustering or other graph-cut algorithms
on the consensus graph [24], [25], [26], [27]. As one of the
most successful extensions, multi-view subspace clustering
methods recover the underlying subspace structure of data
under the assumption that high-dimensional data can be
well characterized within low-dimensional subspaces.

Existing multi-view subspace clustering methods have
shown their effectiveness and robustness in many applica-
tions. Most existing multi-view subspace clustering method-
s integrate multi-view information in similarity or represen-
tation level by merging multiple graphs or representation
matrices into a shared one. For example, Guo et al. [28] learn
a shared sparse subspace representation by performing ma-
trix factorization. Similarly, the centroid-based multi-view
low-rank sparse subspace clustering method [29] induces
low-rank and sparsity constraints on the shared affinity
matrix across different views. Li et al. [29] construct a la-
tent representation by maximizing the dependence between
pairwise views, which essentially encodes the complemen-
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tary information among views. Different from obtaining
a shared representation or graph directly, [30] and [31]
induce Hilbert-Schmidt Independence Criterion(HSIC) and
Markov chain to learn complementary subspace represen-
tations and then add them together directly or adaptively
to get a unified representation. Although these subspace
methods mentioned above have achieved significant im-
provements, they can still be improved from the following
two points: i) The majority of existing multi-view subspace
clustering methods learn a shared affinity matrix or graph
and then apply spectral clustering to obtain the final clus-
tering result. However, directly learning a common affinity
matrix or graph from the original data may affect the
clustering structure because the original data often consists
of noise and redundancy [32]. Few of them make full use
of more informative multi-view partition information for
improving clustering results. ii) Previous approaches are
usually conducted in a two-step fashion, which implies that
the learned common representation may not be suitable for
the clustering task. They cannot obtain optimal clustering
performance since the similarity learning step is separated
from the subsequent clustering step.

To address the above-mentioned issues, in this paper, we
propose a novel Consensus One-step Multi-view Subspace
Clustering method (COMVSC) to integrate the representa-
tion learning and clustering process into a unified frame-
work. In this framework, as shown in Fig. 1, we jointly op-
timize individual similarity matrices, partition matrices and
clustering labels. To be specific, COMVSC firstly establishes
similarity learning based on the self-representation manner
in each view. Based on the assumption that the individual
view’s clustering structure should be similar, we propose
to fuse clustering indicator matrices of different views into
a consensus one. Different from the previous similarity-
fusion manner, our method adopts partition-level fusion,
which avoids the noise and redundancy in the original
data. Furthermore, spectral rotation is introduced to the
consensus clustering indicator matrix to directly obtain clus-
tering labels, avoiding the additional k-means or spectral
clustering step in previous methods. By taking the interi-
or interactions between the three sub-processes (similarity
learning, partition fusion and spectral rotation), each of
them can be boosted by others. Moreover, we develop an
efficient algorithm to solve the resulting optimization prob-
lem. Extensive experiments on several multi-view datasets
are conducted to evaluate the effectiveness of our method.
As demonstrated, the proposed approach enjoys superior
clustering performances in comparison with several state-
of-the-art multi-view subspace clustering methods.

The main contributions of this work are summarized as
follows:

• We propose a unified multi-view subspace clustering
framework which jointly optimizes similarity learn-
ing, clustering partition and final clustering labels.
Hence our method directly outputs the discrete clus-
tering labels, which avoids the sub-optimal solution
of existing two-step approaches.

• Our COMVSC method incorporates multiple source
information in partition level from each individual
view, which not only preserves the view specific local

clustering structure but also guarantees the consis-
tency among multiple views. In addition, partition-
level fusion method avoids the noise and redundan-
cy occurring in fusing information in similarity level.

• An iterative algorithm is proposed to solve the result-
ing optimization problem. Extensive experiments on
several multi-view benchmark datasets demonstrate
the effectiveness of our method comparing to other
state-of-the-art approaches.

The rest of this paper is organized as follows. The related
works are introduced in Section 2. Then we formulate our
proposed COMVSC method in Section 3 . The correspond-
ing optimization method and its analysis are given in Sec-
tion 4 and Section 5, respectively. In Section 6, we report the
experiment results and conduct experimental and statistical
analysis. At the end of the paper, we make a conclusion and
prospect in Section 7.

2 RELATED WORK

2.1 Notation
In this paper, matrices are represented with bold capital
symbols. For a matrix A, Ai,: and Ai,j represent its i-th
row and the ij-th element. The Frobenius norm of matrix A
is denoted as ‖A‖F . The `2 norm of vector Ai,: is ‖Ai,:‖2.
The transpose, the trace of matrix A are denoted by AT,
Tr(A), respectively.

Given a dataset with n samples from m views, points
in the v-th view are denoted as Xv = [xv1,x

v
2, · · · ,xvn] ∈

Rdv×n, where xvn is a dv-dimension column vector.
Then the multi-view dataset can be expressed as X =
[X1,X2, · · · ,Xm]T ∈ Rd×n, where d =

∑m
v=1 dv and dv

is the feature dimension of the v-th view.
In addition, 1 denotes a column vector whose elements

are all one. Ik refers to k-dimension identity matrix.

2.2 Subspace clustering
Data points can be represented by underlying low-
dimensional subspace. Given n data point A ∈ Rd×n, self-
representation method [33] is utilized to express each data
points with a linear combination of the data themselves. It
can be formulated as:

A = AZ + E, (1)

where Z is the subspace representation matrix with each col-
umn being the representation of corresponding data point.
E is the noise matrix.

By minimizing the reconstruction loss between A and
AZ, the general formulation of subspace clustering can be
expressed as:

min
Z

L(A,AZ) + λ Ω(Z)

s.t. 0 ≤ Zi,j ≤ 1,ZT1 = 1,
(2)

where L(·) and Ω(·) denote the reconstruction loss function
and regularization term respectively. λ > 0 is a balance
parameter. Z is also called the self-representation matrix,
reflecting the similarity among data points. Based on it,
constraint 0 ≤ Zi,j ≤ 1 is applied to keep Z non-negative.
Meanwhile, the diagonal elements of Z is unequal to zero
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Fig. 1: Framework of proposed COMVSC. With the multi-view data input, COMVSC learns the partition information from
corresponding affinity matrix. Then a partion-level fusion method is applied to integrate the complementary information
across the multiple views. The final clustering results can directly output by performing spectral rotation on the unified

partition. The three processes are integrated into a framework and boosted by each oher.

avoiding the trivial solution. It means that each sample can
only be represented with the combination of other samples.
The constraint ZT1 = 1 expresses that samples lie in a
union of affine subspaces, rather than linear subspaces[34].

After that, operations like normalization and sym-
metrization are imposed on subspace representation Z in
subsequent task to obtain the affinity matrix. Thus, we can
perform spectral clustering on the affinity matrix to get the
clustering indicator matrix and then the clustering result.

2.3 Multi-view subspace clustering
When datasets have multiple features X =
[X1,X2, · · · ,Xm]T ∈ Rd×n, problem can be extended into
the following mulit-view subspace clustering accordingly.

min
Zv

L(Xv,XvZv) + λ Ω(Zv) + Cons(Zv,Z∗)

s.t. 0 ≤ Zvi,j ≤ 1, (Zv)T1 = 1,diag(Zv) = 0 ,
(3)

Zv ∈ Rn×n is regarded as the subspace representation ma-
trix of v-th view while Z∗ ∈ Rn×n is the consensus subspace
representation across multiple views. Cons(·) are some
strategies to reach consensus from several view-specific
subspace representations. This is so called similarity-fusion
methods.

There are several drawbacks shared by the similarity-
fusion methods. Firstly, the subspace representations direct-
ly learned from data points are usually full of noise and
redundancy. Secondly, although the clustering structure of
the different views is similar theoretically, the magnitude of
element values in Zv are remarkably different[34]. Thirdly,
most existing methods usually adopt a two-step strategy,
separating the representation learning and clustering pro-
cess. Commonly, the first step is to utilize subspace learning
to get a unified representation. Then traditional clustering
methods (e.g., k-means or spectral clustering) are applied to
the consensus representation to get the clustering result.

Consequently, the key issue in multi-view subspace
clustering is how to utilize multiple representations from

different views into a consensus one. There are two com-
mon strategies in existing methods to address this problem.
One representative strategy, Diversity-induced Multi-view
Subspace Clustering(DiMSC) [31] explores the complemen-
tary information among multi-view features using Hilbert-
Schmidt Independence Criterion(HSIC). Then diverse sub-
space representations are simply added together as spec-
tral clustering input to generate the final result. Another
strategy, such as Multi-view Subspace Clustering (MVSC)
[34] strengthens the consistency between different views by
performing spectral embedding on them to get a unified
clustering indicator matrix.

These multi-view subspace clustering methods have
achieved promising performance in real applications. How-
ever, rare of the existing approaches make full use of
multi-view partition information for improving clustering
results. Many real-world data contains noise and outliers,
which results in a poor similarity matrix. Nevertheless,
the information in the partition level reflects the intrinsic
clustering structure. Therefore, considering to fuse multi-
view information in partition level is a natural and novel
idea. Furthermore, most of the previous approaches are
a two-step strategy. They are not able to obtain optimal
clustering performance since the similarity learning step is
separated from the subsequent clustering step [32]. In order
to solve these issues, we propose a novel Consensus One-
step Multi-view Subspace Clustering (COMVSC) method to
integrate representation learning, partition fusion and clus-
tering into a unified framework. By doing so, the subspace
representations we learned are designed for the clustering
goal and more informative partition-level information is
fused to obtain the final clustering result.

In addition to the multi-view clustering presented in
this paper, related literature utilizing multiple information
includes multi-task clustering and multi-level clustering.

Multi-task clustering belonging to the field of multi-
task learning, refers to strategies that utilize multiple related
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tasks to promote clustering performance and generaliza-
tion. A latent representation is shared by different tasks
in the learning process, containing the complementary do-
main information learned from each task. A representative
work [35] combines multi-task and multi-view learning. The
proposed framework contains three parts: within-view-task
clustering, multi-view relationship learning, and multi-task
relationship learning. Under this framework, a common
view that incorporates task-shared features and task-specific
features is attained and therefore boosts the clustering per-
formance. Work in [36] is an application of single-view
multi-task clustering in the field of environmental science
and the examination of air pollution in Turkey.

Multi-level clustering coarsens large-scale or complicat-
ed datasets to smaller problems recursively, making issues
easier than the original datasets. Then, the partition of the
coarsest level successively reverts to the original problem.
As an application of multi-level clustering methods on anal-
ysis of human intracranial electroencephalogram, Wulsin
et al. [37] proposes to cluster over the different levels of
seizures data to boost the performance of clustering. The
experimental results present to approach the manual results
by experts.

3 PROPOSED APPROACH

In this section, we introduce our novel Consensus One-Step
Multi-View Subspace Clustering method and give a unified
objective function.

As in the aforementioned multi-view subspace cluster-
ing, we can get the subspace representation Zv for each
view.

min
Zv

m∑
v=1

‖Xv −XvZv‖2F + λ‖Zv‖2F

s.t. 0 ≤ Zvi,j ≤ 1, (Zv)T1 = 1,diag(Zv) = 0 .

(4)

Zv can be regarded as affinity matrix, indicating the sim-
ilarities between data points. The elements in Zv should be
non-negative and vertically added up to one. As mentioned
in Theory 1, an ideal similarity structure for clustering
should hold the property that the number of connected com-
ponents in affinity matrix is equal to the number of clusters.
Similarity structure with this property could contribute to
the subsequent clustering.

Theorem 1. The number of connected components in similarity
matrix is equal to the multiplicity of eigenvalue 0 of corresponding
Laplacian matrix [38].

Theorem 1 means that the samples can be divided into
k clusters if the number of the components in the affinity
matrix is exactly equal to k. However, the solution Zv

learned from Eq. (4) may not satisfy the desirable property.
Ideally, if the affinity matrix has k connected components,
we can get the rank of corresponding laplacian matrix Lv

is n − k. Naturally, we add a rank constraint in Eq. (4) to
achieve this condition. The optimization problem becomes:

min
Zv

m∑
v=1

‖Xv −XvZv‖2F + λ‖Zv‖2F

s.t. 0 ≤ Zvi,j ≤1, (Zv)T1 = 1,

diag(Zv) = 0, rank(Lv) = n− k ,

(5)

where Lv = Dv − Zv+(Zv)T

2 , Dv is the degree matrix of Zv

whose i-th diagonal element Dv
i,i =

∑n
j=1 Z

v
i,j .

However, directly applying rank constraint rank(Lv) =
n− k to Eq. (4) will make the optimization problem hard to
tackle. We can transform the rank constrained problem into
minimizing Tr((Fv)TLvFv) thanks to Ky Fan’s Theorem
[39]

∑k
i=1 σi(L

v) = minFvFv=Ik Tr((Fv)TLvFv). σi(Lv)
is the i-th smallest eigenvalues of Lv and Fv ∈ Rn×k is the
clustering indicator matrix of v-th view. It is obvious that the
constraint rank(Lv) = n − k holds when

∑k
i=1 σi(L

v) = 0.
Therefore, the problem in Eq. (5) can be transformed into
the following trace form, which is much easier to solve.

min
Fv,Zv

m∑
v=1

‖Xv −XvZv‖2F + λ‖Zv‖2F + Tr((Fv)TLvFv)

s.t. 0 ≤ Zvi,j ≤ 1, (Zv)T1 = 1,diag(Zv) = 0, (Fv)TFv = Ik
(6)

As shown in Eq. (6), each view can get its individual
spectral representation Fv . Multi-view clustering holds the
assumption that various clustering structures in different
views should be analogous to each other [34]. Namely, sim-
ilar samples should be divided into same cluster no matter
from which view. Therefore we enforce each Fv to align
with a consensus F∗ to integrate multiple information across
views. Since Fv provides more discriminative information
and less redundancy and noise than the similarity matrix,
fusing the partition representation Fv could achieve superi-
or performance over similarity fusion. Mathematically, the
partition fusion term can be formulated as:

min
F∗,Fv

m∑
v=1

‖Fv − F∗‖2F ,

s.t. (Fv)TFv = Ik, (F∗)TF∗ = Ik,

(7)

After obtaining the consensus partition representation
F∗, it is conventional to feed F∗ into k-means to get the
final clustering result. However, such a strategy separates
the learning of the representation from the final clustering
process, which leads to a suboptimal solution. Therefore we
introduce a rotation matrix R ∈ Rk×k to jointly optimize
the representation and the clustering result. This term can
be written as:

min
Y,R,F∗

n∑
i=1

k∑
c=1

(Yi,c)
γ‖tc − F∗i,:R‖22

s.t. Yi,c ≥ 0, Yi,:1k = 1,RTR = Ik,

(8)

where γ is considered as fuzzy coefficient. Similar to one-
hot encoding, tc is a 1 × k dimensional vector used to
distinguish each cluster. Specifically, tc terms the vector
that the c-th element equals to 1 and others are 0, where
c ∈ {1, 2, · · · , k}. F∗i,: is the i-th row of F∗, indicating the
representation corresponding to the i-th sample. Inspired by
[40], Yi,c signify the probability of the i-th sample belonging
to the c-th cluster. R establishes the rational interactions
between Y and F∗. To be specific, matrix R extracts the
distinguished clustering structure of F∗. If the i-th sample
representation F∗i,: shows prominent structure at the c-
th position after rotation, the label matrix Y will has a
relatively large probability value at its position of i-th row
c-th column.
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Through the spectral rotation in Eq. (8), we can avoid
performing a subsequent discretization on the consensus
representation and directly output the clustering results
in an end-to-end manner. Combining Eq. (6)(7)(8), we can
fulfill our COMSC framework as follows:

min
F∗,R,Y,
Fv,Zv

m∑
v=1

‖Xv −XvZv‖2F + λ‖Zv‖2F + Tr((Fv)TLvFv)︸ ︷︷ ︸
Subspace Representation Construction

+
m∑
v=1

‖Fv − F∗‖2F︸ ︷︷ ︸
Partition Fusion

+
n∑
i=1

k∑
c=1

(Yi,c)
γ‖tc − F∗i,:R‖22︸ ︷︷ ︸

Spectral Rotation

s.t. 0 ≤ Zvi,j ≤ 1, (Zv)T1 = 1,diag(Zv) = 0,RTR = Ik,

(Fv)TFv = Ik, (F
∗)TF∗ = Ik, Yi,c ≥ 0, Yi,:1k = 1 .

(9)
In this way, the affinity matrices, consensus partition,

and final clustering labels matrix are learned simultaneously
in a unified framework. The three steps negotiate with
each other to better serve clustering, leading to promising
clustering performance.

4 OPTIMIZATION

The constrained problem in Eq. (9) is difficult to solve
directly. In this section, we propose an iterative algorithm
to solve this optimization problem efficiently.

4.1 Update subspace representation matrix Zv

Fixing variables Fv , F∗, R, Y, the optimization for Zv can
be transformed into solving

min
Zv
‖Xv −XvZv‖2F + λ‖Zv‖2F + Tr((Fv)TLvFv)

s.t. Zv ≥ 0, (Zv)T1 = 1,diag(Zv) = 0 .
(10)

In this paper, we adopt a two-step approximation meth-
ods to optimize Zv . We first obtain the closed-form solution
without any constraints. Then we apply the constraints on
Zv to approximate the optimal solution.

Each of Zv can be solved separately since views are in-
dependent of each other. In the first step, we can rewrite Eq.
(10) into Eq. (11) by ignoring the superscript and constraints.

min
Z
‖X−XZ‖2F + λ‖Z‖2F + Tr(FTLF) . (11)

Note that Tr((FTLF) =
∑n
i,j=1

1
2Zi,j‖fi,: − fj,:‖2. We

denote Qi,j = ‖fi,: − fj,:‖, therefore Qi,: ∈ R1×n. By setting
the derivative of Eq. (11) with respect to Z to zero, we can
get the following closed-form solution:

Ẑ = (XTX + λI)−1(XTX− 1

4
QT) . (12)

In the second step, we can projecting Ẑ into a constrained
space. Then the approximate solution of Z can be derived
through the following problem: For each row, we can get

min
Zvi,:≥0,(Zvi,:)T1=1,Zi,i=0

∥∥∥Zvi,: − Ẑvi,:

∥∥∥2
F

(13)

Then we can obtain the lagrange function of Eq. (13) as

L
(
Zvi,:,α, β

)
=
∥∥∥Zvi,: − Ẑvi,:

∥∥∥2
F
− αi

(
Zvi,:

T1− 1
)
− βT

i Zvi,: ,

(14)
where αi and βi ≥ 0 is the lagrangian multipliers. And then
according to KKT condition and some calculation [41], [42],
we can easily obtain

Zvi,: = max
(
Ẑvi,: + αi1, 0

)
,Zvi,i = 0, αi =

1 + (Ẑvi,:)
T1

n− 1
.

(15)

4.2 Update consensus representation F∗

With Zv , Fv , R, Y being fixed, the optimization problem
for F∗ can be simplified as

min
F∗

m∑
v=1

‖Fv − F∗‖2F +
n∑
i=1

k∑
c=1

(Yi,c)
γ‖tc − F∗i,:R‖22

s.t. (F∗)TF∗ =Ik

(16)

Proposition 1. The minimum problem of
min

∑n
i=1

∑k
c=1(Yi,c)

γ‖tc − F∗i,:R‖22 is equivalent to
max Tr(RT(F∗)TG), where G ∈ Rn×k, and its i-th
row Gi,: =

∑k
c=1(Yi,c)

γtc.

Proof. Equation min
∑n
i=1

∑k
c=1(Yi,c)

γ‖tc −F∗i,:R‖22 equals
to max

∑n
i=1

∑k
c=1 (Yi,c)

γ Tr(RT(F∗i,:)
Ttc)

It is easy to obtain that Tr(RT(F∗i,:)
Ttc) = RT

c,:(F
∗)T:,i.

Therefore the equation can be rewritten as:

max
n∑
i=1

k∑
c=1

(Yi,c)
γRT

c,:(F
∗)T:,i (17)

By expanding Eq. (17) element-wise, we can get:∑n
i=1

∑k
c=1(Yi,c)

γRT
c,:(F

∗)T:,i = Tr(RT(F∗)TG), where
Gi,: =

∑k
c=1(Y γi,c)tc.

Consequently, min
∑n
i=1

∑k
c=1(Yi,c)

γ‖tc − F∗i,:R‖22 is e-
quivalent to max Tr(RT(F∗)TG), where G ∈ Rn×k, and
its i-th row Gi,: =

∑k
c=1(Yi,c)

γtc.

Proposition 2. We can easily get the the economic rank-k SVD
of B is B = UΣVT. Accordingly, the constrained problem

max
A

Tr(ATB) s.t. ATA = I (18)

has closed form solution:

A = UVT

Proof. By taking the the normal singular value decomposi-
tion B = UΣVT, we can get :

Tr(ATB) = Tr(ATUΣVT) = Tr(VTATUΣ)

Setting Q = VTATU, we have VTATUUTAV = I. There-
fore we get Tr(VTATUΣ) = Tr(QΣ) ≤ Tr(IΣ) = Σki=1σi,
where σi is the i-th diagonal element of Σ.

The solution of maximize Eq. (18) can be obtained when
QΣ = IΣ, that is VTATU = I, so we can get the closed
solution A = UVT.
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According to proposition 1, the problem of Eq. (16) can
be transformed into the follow matrix form:

min
F∗

m∑
v=1

−2Tr((Fv)TF∗)− Tr(RT(F∗)TG)

s.t. (F∗)TF∗ = Ik.

(19)

Eq. (19) can be transformed into Eq. (20) by simple
transformation.

max
F∗

Tr((F∗)TN) s.t. (F∗)TF∗ = Ik, (20)

where N = 2
∑m
v=1 Fv + GRT. According to proposition 2

and its proof, we can get the closed-form optimal solution
F∗ = U1V

T
1 , where U1 and V1 are left singular matrix and

right singular matrix of matrix N respectively.

4.3 Update spectral representations Fv

By fixing the other variables and removing terms that are
irrelevant to Fv , the optimization for Fv can be transformed
into solving the following problem:

min
Fv

Tr((Fv)TLvFv)− 2Tr((Fv)TF∗)

s.t. (Fv)TFv = Ik
(21)

Equation Eq. (21) can be relaxed into the following form,
where λmax is the largest eigenvalue of Lv .

max
Fv

Tr((Fv)T(λmaxI− Lv)Fv) + 2(Tr(Fv)TF∗)

s.t. (Fv)TFv = Ik
(22)

Proposition 3. If A,B are positive semidefinite matrices,
f(W) = Tr(WTAWB) + Tr(WTC) is a convex function.
Problem can be solved by optimizing max

WTW=I
Tr(WTM) itera-

tively, where M = f ′(W) = 2AWB + C. [43]

According to proposition 3 and proposition 2, con-
vex function f(Fv) = Tr((Fv)T(λmaxI − Lv)Fv) +
2(Tr(Fv)TF∗) can be solved by the following algorithm.

Algorithm 1 Update Fv

1: while not converged do
2: M = 2(λmaxI− Lv)Fv + 2F∗.
3: Solve max

(Fv)TFv=I
Tr((Fv)TM) to update Fv .

4: Perform SVD on M, M = U2ΣVT
2

5: Fv = U2V
T
2

6: end while

4.4 Update spectral rotation matrix R

Fixing variables like Zv , Fv , F∗, Y and removing terms
that are irrelevant to R, the optimization for R can be
transformed into solving the following problem:

min
R

n∑
i=1

k∑
c=1

(Yi,c)
γ‖tc − F∗i,:R‖22

s.t. RTR = Ik.

(23)

As showed in proposition 1, this problem is equivalent
to :

max
R

Tr(RT(F∗)TG) s.t. RTR = Ik, (24)

where G ∈ Rn×k and its i-th row is gi,: =
∑k
c=1(Yi,c)

γtc.
Denoting (F∗)TG as H, we can get

max
R

Tr(RTH) s.t. RTR = Ik (25)

The optimal solution R = U3V
T
3 can be derived from

proposition 2, where U3 and V3 are left singular matrix
and right singular matrix of H respectively.

4.5 Update probability labels matrix Y

Fixing variables like Zv , Fv , F∗, R and removing terms that
are irrelevant to Y, the optimization for each Yi,:, the i-th
row of the matrix Y, can be transformed into solving the
following problem:

min
k∑
c=1

(Yi,c)
γ‖tc − F∗i,:R‖22

s.t. Yi,c ≥ 0,Yi,:1k = 1

(26)

We denote Pi,c = ‖tc − F∗i,:R‖22 as the elemen-
t of the i-th row and c-th column of matrix P.
Then the optimization function can be rewritten as
minYi,c≥0,Yi,:1k=1

∑k
c=1(Yi,c)

γPi,c.
When γ = 1, the optimal solution of Eq. (26) can be

formulated as: Yi,c =< c = argj minPi,j >, where < · > is
1 if the argument is true or 0 otherwise.

When γ > 1, we can get the following closed-form
solution by setting the derivative of its Lagrangian function
with respect to Yi,c to zero.

Yi,c =
(Pi,c)

1
1−γ∑k

c=1(Pi,c)
1

1−γ
(27)

The entire optimization is summarized in Algorithm 2.
The objective of Algorithm 2 is monotonically decreased
when optimizing one variable with the others fixed at each
iteration. At the same time, the whole optimization problem
is lower-bounded. As a result, the proposed algorithm can
be verified to be convergent.

Algorithm 2 COMVSC
Input: Data points in v views {Xv}mv=1, the number of
cluster k, hyper-parameters λ and γ.
Output: Probability clustering labels Y
Initialize:Initialize Fv with the eigenvectors of correspond-
ing laplacian matrix. Randomly initialize the orthogonal ma-
trix F∗. Initialize rotation matrix R with k × k dimensional
identity matrix. Initialize label matrix Y with only one 1 in
each row.

1: while not converged do
2: Update Zv by Eq. (12).
3: Update F∗ by solving Eq. (20).
4: Update Fv by solving Eq. (21).
5: Update R by solving Eq. (24).
6: Update Y by Eq. (27).
7: end while
8: return clustering labels Y. In each row, the column

number corresponding to the largest element is exactly
the cluster to which the data point belongs.
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5 ANALYSIS AND DISCUSSIONS

In this section, we analyze the computational complexity
and give some discussions of the proposed method.

Computational Complexity: With the optimization pro-
cess outlined in Algorithm 2, the computational complexity
of COMVSC consists of three sub-processes. In first step
(similarity learning), the main computational complexity of
matrix inverse operation (XTX + λI)−1 is O(mn3). Then
the updating process of F∗ costs O(n3) while updating
Fv is O(t1mnk

2), where t1 is the number of iterations
of Algorithm 1 . In order to update R and Y, we need
O(mk3) and O(mnk2 + nk). Overall, the complexity of our
Algorithm 2 is O(Tmn3), where T is the number of total
iterations.

Discussion: Our proposed COMVSC enjoys several ad-
vantages. Firstly, COMVSC fuses multiple subspace infor-
mation in partition level since every individual partition
captures the local clustering structure in its respective view.
Furthermore, comparing to similarity-fusion methods, it is
much easier and more reasonable to reach an agreement
in partition matrices. Secondly, our method is considered
as an end-to-end framework which can directly output the
clustering labels. Therefore, the joint manner ensures that
the learned representation best serves the clustering task.

Our method is limited by the following two points. The
first one is the cubic computational complexity. It may limit
the scalability of the proposed algorithm. There are some
ways to accelerate our calculations, such as parallelization,
a fast solution for Fv , fast SVD and automatic convergence
condition. All of the three factors could help reduce the
running time to some degree. The second point is the
capacity to deal with the data with imbalanced categories
needs to be improved. We will later consider balancing
the categories by performing data augmentation on small
clusters or sampling from large clusters, or utilizing the
strategy of weighted samples.

6 EXPERIMENTS

In this section, we extensively evaluate the clustering prop-
erty of the proposed method on seven widely used multi-
view benchmark datasets. The performance of COMVSC
is compared with a single-view clustering algorithm and
six state-of-the-art multi-view methods in terms of three
clustering evaluation metrics.

6.1 Datasets Description

Seven public multi-view benchmark datasets including B-
BCSport [44], yaleA [45], Cornell [46], MSRC-v1 (Microsoft
Research Cambridge Volume 1) [47], Wikipedia Articles [48],
Webkb [49] and Handwritten are used in our experiments.
Specifically, the key information of them is summarized in
Table 1 .

BBCSport is a subset dataset with 116 samples chosen
from the original sports news database in five topical ar-
eas. Each document is split into four related segments as
features, each consisting of successive paragraphs of text.

yaleA is a widely used dataset of face images, consist-
ing of 165 images of fifteen different people. Each person
has 11 grayscale images, and these images reflect different

facial expressions of the object or configurations. Each of
image has three features: 9-dimensional color moment, 512-
dimensional GIST [50] and 50-dimensional LBP (Local Bina-
ry Pattern) [51].

Cornell is a web page dataset collected from Cornell
University. There are 195 pages in five categories. Content
features and cites features are utilized to describe each page.
To be specific, the content view contains 1073 words to
indicate the absence and presence of a word on a page. The
cites view reflects the number of citation links between this
page and others.

MSRC-v1 is a scene recognition dataset containing 240
images with each category 30 samples. We select 7 classes
(tree, car, face, cow, bicycle, building and airplane) total-
ly 210 images from them and extract 1302-dimensional
CENT (Census Transform) [52], 512-dimensional GIST, 256-
dimensional LBP, 210-dimensional SIFT (Scale Invariant
Feature Transform ) [52], 100 dimensional HOG (Histogram
of Oriented Gradient) [53], 48-dimensional CMT (Color Mo-
ment) [54] features from each image.

Wikipedia Articles is a widely used dataset for cross-
modal retrieval, which consists of 693 samples in 10 cat-
egories. 128-dimensional SIFT features for images and 10-
dimensional features for text deriving from an LDA (Latent
Dirichlet Allocation) model are extracted from the data.

Webkb is also a dataset of web pages. They were collect-
ed by the World Wide Knowledge Base project. There are
1051 pages divided into two categorize. Each instant can be
interpreted by two views, the same as the Cornell dataset.

Handwritten contains 2000 images of ’0’-’9’ handwritten
digits. Each of these classes has 200 images, described by six
features, listed in the following Table 1 .

6.2 Compared Methods

We compare our proposed COMVSC with the following
methods, including a baseline and 11 state-of-the-art multi-
view subspace clustering algorithms.

FeatureConcate (FeaCon) is regarded as a baseline
method. It concatenates the features from all views directly
and then performs k-means to get the final result. Co-
regularized multi-view spectral clustering [55] utilizes a
co-regularization term to make the partitions in different
views agree with each other. Two schemes, i.e., centroid-
based method (Co-reg c) and pairwise method (Co-reg p),
are proposed to accomplish this goal. Multi-view Low-
Rank Sparse Subspace Clustering (MLRSSC) [29] learns
a joint subspace representation across all the views by
conducting sparsity and low-rank constraint on each affin-
ity matrix. Latent Multi-view Subspace Clustering (LMSC)
[56] conducts subspace clustering on latent representation
learned from multi-view features to generate a common
subspace representation. Robust Multi-view K-Means clus-
tering (RMKMC) [9] integrates multiple representations
adaptively and induces structured sparsity-inducing nor-
m to make it more robust to outliers. Multiple Partition
Aligned Clustering (mPAC) [13] learns the affinity matrix
and obtains the clustering result by assigning each parti-
tion with a respective rotation matrix. Flexible Multi-view
Representation Learning for Subspace Clustering (FMR) [1]
utilizes HSIC to flexibly enforce different views to be close
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TABLE 1: Statistic of seven benchmark multi-view datasets.

view BBCSport yaleA Cornell MSRC-v1 Wikipedia Webkb Handwritten

1 Segment1 (1991) Color moment (9) Cites (195) CENT (1320) SIFT (128) Cites (1840) Profile correlations (216)
2 Segment2 (2063) GIST (512) Content (1703) GIST (512) LDA (10) Content (3000) Fourier coefficients (76)
3 Segment3 (2113) LBP (50) - LBP (256) - - Karhunen coefficients (64)
4 Segment4 (2158) - - SIFT (210) - - Morphological (6)
5 - - - HOG (100) - - Pixel averages (240)
6 - - - CMT (48) - - Zernike moments (47)

Views 4 3 2 6 2 2 6
Clusters 5 15 5 7 10 2 10
Points 116 165 195 210 693 1051 2000

to a latent representation. With other additional constraints,
FMR learns a more comprehensive and suitable for subspace
clustering. Graph-based multi-view clustering (GMC) [57]
adaptively fuses multiple graph matrices to generate a
unified graph matrix. The unified graph guides the opti-
mization of the graph matrices and also gives the clustering
indicator matrix. Large-scale Multi-view Subspace Cluster-
ing in Linear Time (LMVSC) [58] integrates multiple anchor
graphs and performs spectral clustering on the small graph,
which makes the runtime linear. Partition level multiview
subspace clustering (PMSC) [59] implements the graph
construction, the generation of basic partitions, and fusion
of consensus clustering in an interactive way.

For the above methods, the parameters are tuned as
suggested in their papers to generate the best results. To
evaluate the clustering performance, three metrics: ACC
(Accuracy), NMI (Normalized Mutual Information), and F-
score, are reported in this paper. Notably, higher values
indicate better performance.

Denoting qi as the clustering result and pi as the true
label of data point xi, ACC is defined as follows:

ACC =

∑n
i=1 δ(pi,map(qi))

n
(28)

where δ(x, y) = 1 if x = y, otherwise δ(x, y) = 0. map(qi)
is the best mapping function that permutes clustering labels
to match the true labels using the KuhnMunkres algorithm.

Given two variables P and Q, NMI is defined as

NMI(P,Q) =
I(P,Q)√

(H(P )H(Q))
, (29)

whereH(P ) andH(Q) are the entropies of P andQ, respec-
tively, and I(P,Q) is the mutual information between P and
Q. For clustering, P and Q are the clustering results and
the true labels, respectively. NMI reflects the consistency
between clustering results and ground truth labels.

F-score is denotd by precision and recall. We take F1-
score in this paper:

F1-score = 2× Precision× Recall
Precision + Recall

, (30)

where Precision = TP
TP+FP and Recall = TP

TP+FN . Note that TP
is true positive, TN is true negative, FP is false positive and
FN is false negative.

6.3 Experiment Results and Analysis
The three evaluation metrics (ACC, NMI, and F-score) of
the compared algorithms on the seven real-world datasets

are displayed in Table 2. The best result is highlighted in
red, while the second-best is reported in blue.
Experiment analysis. From the overall results of the seven
datasets, our method achieves the best results for all the
other datasets and all evaluation criteria, except for the
suboptimal NMI on the Handwritten dataset. In terms of
accuracy, our method exceeded the second-best results on
the datasets BBCSport, yaleA,Cornell, MSRC-v1, Wikipedia,
Webkb, and Handwritten by 8.63%, 16.37%, 2.57%, 6.19%,
3.18%, 1.8% and 5.6%, respectively. The F-score exceeds the
next best algorithm by 2.15%, 20.69%, 2.84%, 11.74%, 2.53%,
1.24% and 2.81% for the corresponding dataset, respectively.
As for NMI, our method is only 1.16% below the best
method on Handwritten but surpasses the third algorithm
by 5.64%. The above results demonstrate the validity and
sophistication of our proposed method and clearly show
that our COMVSC method is a valuable method for multi-
view subspace clustering.

In most cases, baseline FeaCon performs the worst in
comparison with the other methods. This indicates the effec-
tiveness of multi-view clustering methods on exploiting the
complementary information across views. It is also claimed
that although individual view could be used for finding
clustering pattern, the clustering performance will be more
accurate by exploring information across multiple views.

Compared with similarity-fused methods like GMC and
LMVSC and the multi-view k-means methods RMKMC, our
approach and mPAC could achieve more impressive perfor-
mance. This mainly because the partition-level information
is more informative and less noisy than the similarity-level
information. More informative multiple partition informa-
tion is utilized to serve the clustering task and therefore
gain better performance. This proves that fusing partition
information is a practical approach in dealing with multi-
view clustering problems.

Multi-view subspace clustering methods like LMSC and
FMR learn a new representation in latent space, which avoid
fusing information in noisy original space. However, there
is a large gap between these methods and ours and mPAC
method, probably because they separate the representation
learning and clustering processes, resulting in a sub-optimal
representation. Compared with mPAC and PMSC, we are
able to achieve higher clustering performance with fewer
hyper-parameters. As for ACC, our performance is 8.62%,
6.37%, 2.57%, 4.28%, 6.79%, 1.32% and 5.60% superior to
mPAC on each dataset, respectively. This is attributed to our
soft assignment strategy and rational constraints for Zv .

The above experimental results have well demonstrated
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TABLE 2: The clustering performance of compared methods on seven datasets

Datasets Metrics FeaCon Co-reg c [55] Co-reg p [55] MLRSSC [29] LMSC [56] RMKMC [9] mPAC [13] FMR [1] GMC [57] LMVSC [58] PMSC [59] Ours

BBCSport
ACC 0.3448 0.5069 0.5414 0.4086 0.4741 0.3190 0.6121 0.3793 0.5603 0.4828 0.3138 0.6983
NMI 0.2775 0.3098 0.3241 0.2113 0.3093 0.0333 0.4894 0.0995 0.4771 0.2720 0.0653 0.5346

F-score 0.3864 0.4385 0.4403 0.3901 0.3890 0.2239 0.5107 0.3689 0.4439 0.3934 0.3830 0.5322

YALE
ACC 0.5091 0.6806 0.7230 0.2539 0.7394 0.6121 0.7636 0.6303 0.6788 0.4849 0.1176 0.9152
NMI 0.5730 0.7506 0.7840 0.3738 0.7831 0.6584 0.7812 0.7367 0.7324 0.5535 0.1760 0.9036

F-score 0.4222 0.5901 0.6278 0.2271 0.6482 0.4590 0.6371 0.5437 0.4550 0.3328 0.1212 0.8271

Cornell
ACC 0.3564 0.4256 0.4031 0.3864 0.3487 0.4308 0.5692 0.4000 0.3692 0.4410 0.4451 0.5949
NMI 0.0753 0.1587 0.1148 0.1189 0.0810 0.1491 0.2898 0.1747 0.1389 0.1677 0.0589 0.3008

F-score 0.3288 0.3416 0.3389 0.3031 0.2859 0.3376 0.4741 0.3237 0.3549 0.3896 0.4311 0.5025

MSRC-v1
ACC 0.4541 0.7991 0.6933 0.4852 0.7476 0.7095 0.8143 0.8524 0.8952 0.8810 0.6052 0.9571
NMI 0.4217 0.6991 0.6032 0.3642 0.6450 0.6167 0.7508 0.7490 0.8200 0.8111 0.5695 0.9120

F-score 0.3856 0.6827 0.5866 0.4021 0.6384 0.5894 0.7320 0.7381 0.7997 0.7665 0.5016 0.9171

Wikipedia
ACC 0.2338 0.4760 0.2245 0.3033 0.4141 0.5743 0.5382 0.5556 0.3939 0.5137 0.2003 0.6061
NMI 0.1000 0.3793 0.0983 0.1773 0.3297 0.5345 0.4766 0.5249 0.3838 0.4746 0.0700 0.5361

F-score 0.1492 0.3661 0.1452 0.1945 0.2964 0.4810 0.4450 0.4741 0.2561 0.4114 0.1934 0.5063

Webkb
ACC 0.5821 0.7830 0.8979 0.9049 0.9163 0.7812 0.8211 0.5423 0.7869 0.8820 0.6179 0.9343
NMI 0.0054 0.4584 0.4118 0.5334 0.5277 0.0435 0.3964 0.0069 0.0312 0.4128 0.0802 0.5958

F-score 0.5940 0.7942 0.8790 0.8608 0.8917 0.7936 0.7774 0.5707 0.7961 0.8589 0.6582 0.9041

Handwritten
ACC 0.5830 0.8188 0.7912 0.3702 0.6135 0.6710 0.8890 0.6660 0.8820 0.8540 0.8381 0.9450
NMI 0.6151 0.7785 0.7574 0.5141 0.5996 0.6533 0.8361 0.6572 0.9041 0.8081 0.8226 0.8925

F-score 0.5649 0.7450 0.7209 0.4163 0.5284 0.5922 0.8215 0.5890 0.8653 0.7757 0.8150 0.8934

the effectiveness of our proposed COMVSC in comparison
with other state-of-the-art methods. We summarize the
superiority of the proposed approach in two aspects:
1) COMVSC employs a joint fusion to optimize self-
representation, partition matrices, and clustering labels.
To be specific, when more accurate clustering labels are
obtained during one iteration, we could further use high-
quality labels to guide the generation of representations in
the next iteration and further improve the performance. 2)
Comparing with the existing similarity-fusion methods, the
proposed COMVSC fuses multiple subspace information in
partition level and learns a consensus partition, verifying
the advantages of combing high-level information more
informative and less noise and redundancy. These two
factors contribute to the significant improvements in
clustering performance.

Statistical Analysis. To demonstrate the statistical property
of our proposed method, we conduct the Friedman test and
Nemenyi post-hoc test.

The Friedman test assumes that all of the h compared
algorithms hold the same performance on D datasets.
Specifically, this test includes two main step. The first step
is calculating τX 2 and τF according Eq. (31),

τF =
(D − 1)τX 2

D(h− 1)− τX 2

, (31)

where τX 2 = h−1
h

12D
h2−1 (

∑h
i=1 ri − h+1

2 )2, ri represents the
average rank of the i-th algorithm over all datasets. Besides,
τF obeys the F-distribution with the degree of freedom h−1
and (h− 1)(D − 1).

The second step is eliminating whether the assumption
is true or not by comparing the τF and its corresponding
threshold. If the assumption is denied, it indicates that the
performance of the compared methods is significantly dif-
ferent. Then a post-hoc test is required to further distinguish
the algorithms. The Nemenyi test is a common post-hoc test.

The Nemenyi calculates the critical distance by Eq. (32)
to reflect the difference between the average ordinal results
of various methods.

CD = qα

√
h(h+ 1)

6D
, (32)

where qα can be calculate by qtukey(1 − α, h, Inf)/sqrt(2)
in R programming language.

In our case, the number of compared methods h equals
to 12 and N equals to 7. We sort the ACC, NMI and F-score
of the compared methods from high to low and obtain the
average ranking of each algorithm in terms of all datasets.
Especially, the equal performance of the two algorithms
would result in equal ordinal values.

According to Eq. (31), the τF value of our proposed
algorithm is 6.5424, which is larger than the threshold
1.9370 when α = 0.05. This rejects the assumption that all of
the compared algorithms hold the same performance. Then,
we perform the Nemenyi post-hoc test to further distinguish
multiple methods. After obtaining CD = 6.2982 according
to Eq. (32), we can draw the Friedman test chart as Fig. 2.

From this figure, we come to the conclusion that the
proposed method is significantly different from RMKMC,
FMR, MLRSSC, PMSC and FeaCon in terms of ACC, NMI
and F-score. mPAC only has a significant difference with the
baseline FeaCon. And the other methods do not differ from
any methods significantly. As also can be seen in Fig. 2, our
method holds the best average ranking in comparison with
other methods no matter under which metric. In summary,
our proposed method holds well statistical superior.

Running time Analysis. We record the running time
of compared algorithms on the benchmark datasets and
report them in Fig. 3. Our running times are comparable
on other datasets, except on yaleA, which is slightly higher
than mPAC by 6.2 seconds. The fastest and most suitable
for large-scale datasets are RMKMC, LMVSC and GMC.
These methods are designed to solve large-scale problems.
They are more concerned with efficiency than effectiveness
and thus suffer relatively poor clustering performance.

Although the proposed algorithm is slower than algo-
rithms specifically designed for large-scale scenarios, our
COMVSC could achieve significant improvements in clus-
tering performance compared to them. Besides, the running
time of our method could be further reduced by using
parallelization, a fast solution for updating Fv [60], fast
SVD, and automatic convergence condition.
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Fig. 2: Friedman Test Charts . For each algorithm, the blue dot marks its average rank. The horizontal lines with the dot as
the center indicate the critical distance. No overlapping areas of the lines indicating a significant difference.
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Fig. 3: The running time comparison of different algorithms on seven benchmark datasets.

6.4 Evolution

We use t-Distributed Stochastic Neighbor Embedding(t-
SNE) to visualize the structure of the probability labels
matrix we learned. For example, on Handwritten, as can
be seen in Fig. 4, as the algorithm is iterated, the clustering

structure becomes clearer, which visually demonstrates the
feasibility and validity of the proposed method.

Fig. 5 shows the increasing performance of COMVSC
within iterations on yaleA in terms of ACC, NMI and F-
score, which also verifies that the labels matrix derived from
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(a) 1 iter (b) 5 iter (c) 25 iter (d) 50 iter (e) 100 iter

Fig. 4: The cluster structure evolution illustration on Handwritten. In each figure, the low dimensional clustering reflected
by the learned cluster labels matrix Y is illustrated by the t-SNE algorithm. (a)-(d) indicate the t-SNE results of the

corresponding iterations.

the consensus representation further guides the update of
the consensus representation. The better consensus repre-
sentation leads to better representations. They facilitate each
other at each iteration to generate promising performance.
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Fig. 5: The performance variation curve of the proposed
algorithms on the yaleA.

6.5 Parameter analysis

We also conduct the sensitivity analysis of the hyper-
parameters. The proposed COMVSC method has two
hyper-parameters {λ, γ}. λ is tuned within the set of
{23, 25, · · · , 213}, while γ is tuned in the range of
{1.3, 1.5, · · · , 2.7} with incremental step 0.2.

We visualize the effect of the hyper-parameters λ and γ
on purity for different datasets in Fig. 6. When γ = 1, the
strategy degenerates into a hard partition pattern, which
is often not applicable in practice. It can be observed that
our approach maintains relatively stable clustering perfor-
mance over a wide range under most datasets. In particular,
the datasets BBCSport, Webkb, and yaleA perform better
when λ takes the median value of its content, the datasets
MSRC-v1 and Wikipedia perform better when λ takes the
smaller value of its range. Handwritten maintains good
performance under most parameters.

TABLE 3: Comparative results for two-step and one-step
strategies.

Dataset Metric w/o rotation COMVSC

BBCSport
ACC 0.5603 0.6983
NMI 0.2142 0.5346

F-score 0.3967 0.5322

yaleA
ACC 0.8000 0.9273
NMI 0.6504 0.9252

F-score 0.6117 0.8551

Wikipedia
ACC 0.5498 0.6061
NMI 0.3928 0.5361

F-score 0.4726 0.5063

Handwritten
ACC 0.9200 0.9450
NMI 0.8310 0.8925

F-score 0.8394 0.8934

6.6 Ablation Study

To further illustrate the effectiveness of the one-step strat-
egy, we conduct an ablation study. We remove the last
spectral rotation term and feed the consensus F∗ into k-
means to get the clustering results as contrast experiment
(w/o rotation). Without this term, the algorithm degrades to
a two-step strategy, which requires additional discretization
to obtain the final results. Compared with the two-step
strategy, our algorithm outperforms it on all datasets in
terms of all metrics. Part of the results are shown in Table 3.

The notable results demonstrate the effectiveness and
importance of the one-step strategy. It integrates all in a
framework, enabling end-to-end multi-view clustering for
better clustering through internal mutual negotiation and
facilitation.

7 CONCLUSION

In this paper, we propose a novel consensus one-step multi-
view subspace clustering method. Distinct to existing sub-
space methods, we fuse multiple subspace information in
partition level. Furthermore, similarity learning, partition
fusion, and the clustering processes are combined into a
unified framework, which can be guaranteed to achieve an
optimal solution. And the three steps can be negotiated
with each other to best serve clustering, leading to im-
proved performance. Experiment results on several multi-
view benchmark datasets demonstrate the effectiveness and
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Fig. 6: Evaluating parameter sensitivity using purity.

superiority of our proposed method. In the future, we
will consider large-scale multi-view subspace clustering and
adaptive fusion methods.
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