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Abstract: With the enormous amount of multi-source data produced by various sensors and feature
extraction approaches, multi-view clustering (MVC) has attracted developing research attention and
is widely exploited in data analysis. Most of the existing multi-view clustering methods hold on the
assumption that all of the views are complete. However, in many real scenarios, multi-view data
are often incomplete for many reasons, e.g., hardware failure or incomplete data collection. In this
paper, we propose an adaptive weighted graph fusion incomplete multi-view subspace clustering
(AWGF-IMSC) method to solve the incomplete multi-view clustering problem. Firstly, to eliminate the
noise existing in the original space, we transform complete original data into latent representations
which contribute to better graph construction for each view. Then, we incorporate feature extraction
and incomplete graph fusion into a unified framework, whereas two processes can negotiate with
each other, serving for graph learning tasks. A sparse regularization is imposed on the complete
graph to make it more robust to the view-inconsistency. Besides, the importance of different views is
automatically learned, further guiding the construction of the complete graph. An effective iterative
algorithm is proposed to solve the resulting optimization problem with convergence. Compared
with the existing state-of-the-art methods, the experiment results on several real-world datasets
demonstrate the effectiveness and advancement of our proposed method.

Keywords: multi-feature; incomplete multi-view clustering; subspace learning; graph fusion

1. Introduction

Traditional clustering methods [1–4] usually use a single view to measure the similarity of samples.
With the rapid progress of data collection, individual features are not enough to describe data points.
Multiple views usually contain supplementary information, which may be beneficial to explore the basic
structure of the data. With the development of information technology, data mining and other technologies,
many datasets in the real-world can be presented from different perspectives, called multi-view data.
For example, the same text can be expressed in various languages. In biometric recognition scope, faces,
fingerprints, palm prints and iris could form the different views of multi-view data. In the field of
medical diagnosis, different examinations of patients can be regarded as different views. Multi-view data
could provide sufficient information than the traditional single feature representation in revealing the
underlying clustering structure. Furthermore, distinct views contain specific information of intra-view and
complementary information of inter-view, which are negotiated with each other to boost the performance
of clustering [5–14].

Based on different mechanisms, we can divide the existing multi-view clustering methods into
four categories. The first category methods refer to multi-kernel clustering. These methods usually
combine multiple pre-defined kernels to reach optimal clustering results [12,15–17]. The second kind
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of approach is co-training and co-regularized [18,19]. They iteratively learn multiple clustering results
that can provide predicted clustering indices for the unlabeled data from different views. In this
way, the clustering results are forced to be consistent across views. The third strategy collaboratively
transforms the multi-view information into a compact common binary code space. Then, the clustering
process is measured in the Hamming space and enjoys superior algorithm acceleration [20,21]. The last
mechanism is the subspace-based multi-view clustering method. It assumes that high-dimensional data
points are drawn from various low-dimensional subspaces, and each cluster can be drawn from one of
the subspaces [22–25]. The essential idea is to find several low-dimensional representations embedded
in latent spaces and finally attain a united representation for downstream clustering tasks [26]. Besides,
aiming at finding a shared low-dimensional latent representation via matrix decomposition, the
non-negative matrix factorization (NMF) [27]-based multi-view clustering methods [28–31] can also be
seen as a branch of the subspace-based multi-view clustering method.

Although the algorithms mentioned above have achieved great success in different scenarios,
these traditional multi-view clustering algorithms cannot effectively deal with multi-view data with
incomplete features. Therefore, the incomplete multi-view clustering algorithms [32–34] have attracted
extensive attention. To the best of our knowledge, existing incomplete multi-view clustering algorithms
can be classified into two categories: non-negative matrix factorization based methods and graph-based
methods. The NMF-based methods aim at directly obtaining a common low-dimensional representation
through non-negative matrix decomposition. Most of them take the strategy of combining view-specific
and common representations into a unified one [35–37]. Another representative approach of the
NMF-based method is to fill the missing data with average feature values and then use the weighted
non-negative matrix factorization to reduce the impact of the missing samples [38]. These NMF-based
methods can directly obtain a consistent representation with incomplete samples. However, it is
limited to the following two points: (1) when the number of views is more than two, the common parts
of views will be significantly reduced and cannot be learned a shared representation between views;
(2) NMF-based methods usually neglect the intrinsic structure of data, resulting in an uncompacted
representation.

The graph-based incomplete multi-view clustering algorithms are more effective in exploring
the geometric structure of data than NMF-based methods. The construction of the graph is essential
for the success of clustering. However, it is impossible to construct a complete graph connecting all
samples due to the lack of partial samples in incomplete multi-view clustering. To cover this problem,
Gao et al. [39] first fill the missing parts and then learn graphs and representations. Zhao et al. [36]
utilize NMF to obtain consistent representations to guide the generation of graphs with local structures.
However, when the missing rate is high, the filling strategy will dominate the learning of the
representation, resulting in the filled samples being connected with each other. Moreover, information
fusion refers to fusing multiple sources to achieve consistency. In this stage, multiple views are treated
equally, which is unreasonable in real applications.

To address the above issues, we propose a novel incomplete multi-view clustering method,
constructing the graphs between instances in the latent embedding subspace. In this manner, we can
deal with multi-view data with any number of views. Furthermore, an adaptive weighted mechanism
is induced to fuse the graphs with local-structure into a complete graph.

In this manner, we establish a relation between missing and unmissing samples. An additional
sparse regularization term is imposed on the consensus complete graph to eliminate the adverse effects
of inconsistency between views and noise or outliers from each view. Specifically, the framework of
this paper is illustrated in Figure 1.
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Figure 1. Framework of the proposed adaptive weighted graph fusion incomplete multi-view subspace
clustering (AWGF-IMSC). It is a novel incomplete multi-view clustering method to fuse the local-structure
contained graph with adaptive view-importance learning. Incomplete graphs of different scales are fused
into a complete graph with automatically learning weights. In addition, the constructed complete graph
will further guide the learning process of incomplete graphs and latent representations.

Compared with existing methods, the proposed adaptive weighted graph fusion incomplete
multi-view subspace clustering (AWGF-IMSC) algorithm has the following contributions:

• It induces the similarity graph fusion after obtaining latent spaces to extract the local structure of
inner views. By virtue of it, noise existing in the original space can be eliminated in latent space
and contribute to better graph construction.

• It incorporates relations between missing samples and complete samples into the complete
graph. The sparse constraint imposed on the complete graph improves the view-inconsistency
and reduces the disagreements between views, making the proposed method more robust in
most cases.

• The importance of each view is automatically learned and adaptively optimized during the
optimization. Consequently, the important view has strong guidance in the learning process.
Moreover, there is no limitation to the number of views in our approach. The proposed method is
applicable to any multi-view datasets.

The rest of the paper is organized as follows. The next Section 2 denotes the notations and
symbols used in this paper. Section 3 introduces methods mostly related to our work. The proposed
algorithm and its optimization process are formulated in Section 4. Besides, we also give the analysis
of convergence and complexity of the proposed algorithm in this part. Extensive experiment results
and analysis are shown in Section 5, before conclusion and prospectives.

2. Notation

For clarity, we give the notation used throughout the paper at the beginning. We use bold letters
to represent matrices and vectors. For matrix A, A:,j and Ai,j represent its j-th column and (i, j) element,
respectively. A>, Tr(A) and A−1 denote the transpose, trace and the inverse operations on matrix A,

respectively. ‖·‖F denotes the Frobenius norm. The `2,1 norm is denoted as ‖X‖2,1 = ∑n
i=1

√
∑t

j=1 X2
i,j =

∑n
i=1 ‖Xi,:‖2. Moreover, operator A+ turns the negative elements in matrix A to 0 while maintaining
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the non-negative elements, and vice versa. For multi-view datasets A = {A(1), A(2), · · · , A(m)}, the
superscript (i) represents the i-th view. In individual A(i) ∈ RRdi×N , each column indicates an instance.
N is the number of the samples and di represents the feature dimension of corresponding i-th view.

3. Related Work

In this section, we will present the work most relevant to the proposed method, i.e., semi-non-negative
matrix factorization and subspace learning.

3.1. Semi-Non-Negative Matrix Factorization for Single View

Non-negative matrix factorization (NMF) is a significant branch in the field of matrix factorization.
NMF aims at finding two non-negative matrix U ∈ RRd×K

+ and V ∈ RRK×N
+ to roughly approximate

the original data matrix, i.e., X ≈ UV. Since many real-world datasets are usually high-dimensional,
the NMF methods have been widely applied in image analysis [40], data mining, speech denoising [41]
and population genetics, etc. The semi-NMF [42] is an extension of traditional NMF, which only
requires the coefficient matrix to be non-negative. Specifically, given the data matrix X ∈ Rd×N , the
semi-NMF utilizes the base matrix U ∈ Rd×k and the non-negative coefficient matrix V ∈ Rk×N to
approximate the matrix X:

min
U,V
‖X−UV‖2

F s.t. V ≥ 0. (1)

Ding et al. [42] further propose an iterative optimization algorithm to find the local optimal
solution. The updating strategy can be concluded as follows:

With V being fixed, U can be updated by U = XV>(VV>)−1.

with U being fixed, V can be updated by Vi,j ← Vi,j

√
(X>U)+i,j+[V>(U>U)− ]i,j

(X>U)−i,j+[V>(U>U)+ ]i,j
.

The positive and negative elements of matrix M are denoted as M+
i,j and M−i,j. And they hold on

the property Mi,j = M+
i,j −M−i,j.

NMF and semi-NMF methods are also employed universally in multi-view clustering. Many
of the multi-view clustering (MVC) methods utilize NMF to reduce dimension on each view or
directly reach a consistent latent presentation [28,43]. Especially in the incomplete multi-view scenario,
NMF and semi-NMF play significant roles in achieving a consistent representation from different
incomplete views. Li et al. [35] learn a shared representation for the paired instances and view-specific
representations for unpaired instances via NMF. The complete latent representation can be attained by
combining shared and view-specific representations. The method in [44] utilizes weighted semi-NMF
to reach a consensus representation. Then, the `2,1 norm regularized regression is imposed to align the
different basis matrices. Although these NMF-based methods could learn a consensus representation
from the incomplete views, the number of views and the absence of local structure limit their performance.

3.2. Subspace Clustering

Subspace clustering is an extension of the traditional clustering method which aims at grouping
data in different subspaces [45,46]. The self-representation property [47] of subspace clustering aims to
represent data points by the linear combinations of themselves. The formulation can be expressed as:

min
Z
‖X− XZ‖2

F + βR(Z)

s.t. 0 ≤ Zi,j ≤ 1, Z>1 = 1,
(2)

where X ∈ RRd×N is the original data, Z is the self-representation coefficient matrix, with each column
being a new representation for corresponding data point. β > 0 is a trade-off parameter. Since Z



Sensors 2020, 20, 5755 5 of 18

reflects the correlations among samples, it can be regarded as a graph and then we can perform spectral
clustering algorithm on it to get the final clustering result.

3.3. Incomplete Multi-View Spectral Clustering with Adaptive Graph Learning (IMSC-AGL)

In paper [48], a novel graph-based multi-view clustering method is proposed to deal with
incomplete multi-view scenarios termed incomplete multi-view spectral clustering with adaptive
graph learning (IMSC-AGL). IMSC-AGL optimizes the shared graph from the low-dimensional
representations individually formed by each view. Moreover, a nuclear-norm constraint is introduced
to ensure the low-rank property of the ideal graph. The mathematical formulation can be written as,

min
Z(v),E(v),F(v),M

∑v

(∥∥∥Z(v)
∥∥∥
∗
− λ1 Tr

(
F(v)F(v)TMMT

))
+∑v λ2 Tr

(
F(v)TG(v)TL(v)G(v)F(v)

)
+ ∑v λ3

∥∥∥E(v)
∥∥∥

1
s.t. Y(v) = Y(v)Z(v) + E(v), Z(v)1 = 1,

0 ≤ Z(v) ≤ 1, Z(v)
ii = 0, F(v)TF(v) = I, MTM = I,

(3)

where Yv represents the complete samples in v-th view. Z(v) denotes the respective v-th view’s graph.
F(v) represents the clustering indicator matrix with proper size. Moreover, M refers to the final shared
clustering indicator matrix. Although IMSC-AGL achieves considerable performance in various
applications, it can still be improved from the number of hyper-parameters and considering to fuse
multiple information in a weighted manner.

4. Method

4.1. Adaptive Weighted Graph Fusion Incomplete Multi-View Subspace Clustering

In this section, we present our adaptive graph fusion incomplete multi-view subspace clustering
method (AWGF-IMSC) in detail and give a unified objective function.

For incomplete multi-view data, we remove the incomplete instances and reform as X(i) ∈ RRdi×ni ,
where di and ni represent the feature dimension and the numbers of visible samples of i-th view,
respectively. We assume that semi-NMF factorizes the input data X(i) ∈ RRdi×ni into base matrix
U(i) ∈ RRdi×k and coefficient matrix V(i) ∈ RRk×ni . k is the dimension of target space and is commonly
set to the number of the clusters of X(i). Considering that the missing samples differ in each view,
we learn latent representations of the corresponding visible samples in each view. Therefore, the
semi-NMF for individual view can be formulated as:

min
U(i),V(i)

m

∑
i=1

∥∥∥X(i) −U(i)V(i)
∥∥∥2

F
s.t. V(i) ≥ 0. (4)

To further exploit the intra-view similarity structure and the underlying subspace structure, we
utilize the self-representation property [47] on the k × ni dimensional latent representation V(i) to
construct the graph. Thus, we can obtain the different graphs Z(i) of individual views by solving the
following problem:

min
V(i),Z(i)

m

∑
i=1

∥∥∥V(i) −V(i)Z(i)
∥∥∥2

F

s.t. V(i) ≥ 0, 0 ≤ Z(i)
j,k ≤ 1, Z(i)>1 = 1,

(5)

where the constraint 0 ≤ Z(i)
j,k ≤ 1 and Z(i)>1 = 1 guarantee a good probabilistic explanation for

Z(i). After obtaining the graphs on each view, the natural idea is to integrate the multiple incomplete
information into a complete one. In order to establish the correspondence between the incomplete and
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complete graphs, we denote the index matrix O(i). The index matrix O(i) ∈ RRni×N can extract the
visible instances of view i from the complete graph. To be specific, the matrix O(i) is defined as:

O(i)
j,k =

{
1, if x(i)j is the k-th sample in complete dataset.

0, otherwise.

Through the index matrix, we can achieve the transformation between complete and incomplete

graphs: Z(i) = O(i)Z∗O(i)> or O(i)>Z(i)O(i) = Ẑ∗. In the second condition, O(i) expands the graph
Z(i) into Ẑ∗, where Ẑ∗ has the same size with Z∗, but the irrelevant items to view i are zero.

Owing to the size of the graph and the similarity magnitude differing among views, it is
unreasonable to directly add up the multiple graphs. Consequently, we aim to integrate the multiple
information into a completed graph with adaptive learning weights {αi}m

i=1. With the help of the index
matrix, relevant elements can be extracted from Z∗. Then, we can adaptively fuse {Z(i)}m

i=1 into a
complete graph with auto-learning weights, as illustrated in Equation (6).

min
αi

m

∑
i=1

∥∥∥αiZ(i) −O(i)Z∗O(i)>
∥∥∥2

F
s.t. αi ≥ 0,

m

∑
i=1

αi = 1, (6)

where αi is the weight for i-th view. It is automatically learned and optimized to illustrate the
importance of i-th view. In this manner, the complete graph is learned by a weighted combination
of incomplete graphs. Besides, with the fusion of beneficial information, the inconsistencies between
different views, noise and outliers in individual view are also integrated into the complete graph.
Considering that, an additional sparse constraint is added on Z∗. Therefore, integrating the above
parts into an unified objective function, we have our optimization goal as:

min
U(i) ,V(i) ,
αi ,Z(i) ,Z∗

m

∑
i=1

∥∥∥X(i) −U(i)V(i)
∥∥∥2

F
+
∥∥∥V(i) −V(i)Z(i)

∥∥∥2

F
+ λ1

∥∥∥αiZ(i) −O(i)Z∗O(i)>
∥∥∥2

F
+ λ2 ‖Z∗‖1

s.t. V(i) ≥ 0, 0 ≤ Z(i)
j,k ≤ 1, Z(i)>1 = 1,

m

∑
i=1

αi = 1, αi ≥ 0,

(7)

λ1 and λ2 are non-negative trade-off parameters. In the proposed framework, we have four terms:
using semi-NMF to obtain latent representation, conducting graph construction with self-representation,
adaptive graph fusion and sparse regularizer. Finally, we get a full-size graph Z∗ incorporating all the
sample information in the latent subspace.

4.2. Optimization Algorithm for AWGF-IMSC

The constraint problem in Equation (7) is not jointly convex with regard to all the variables. In
this section, we propose an alternating iterative algorithm to solve this optimization problem.

4.2.1. Update U(i)

With V(i), Z(i), αi and Z∗ fixed, for each U(i), we need to solve the following problem,

min
U(i)

∥∥∥X(i) −U(i)V(i)
∥∥∥2

F
(8)

Each of U(i) can be solved separately since views are independent from each other. Therefore, the
optimization problem that we minimize can be rewritten as:

L(U(i)) = Tr(X(i)>X(i) − 2V(i)>U(i)>X(i) + V(i)>U(i)>U(i)V(i)) (9)
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The solution for U(i) can be easily obtained by setting the derivation w.r.t. U(i) to zero.

∂L(U(i))

∂U(i)
= −2X(i)V(i)> + 2U(i)V(i)V(i)> (10)

Then, we can get the optimal closed-form solution:

U(i) = X(i)V(i)>(V(i)V(i)>)−1 (11)

4.2.2. Update V(i)

Fixing U(i), Z(i), αi and Z∗, the minimum problem for optimizing V(i) can be simplified as:

L(V(i)) =
m

∑
i=1

∥∥∥X(i) −U(i)V(i)
∥∥∥2

F
+
∥∥∥V(i) −V(i)Z(i)

∥∥∥2

F
s.t. V(i) ≥ 0, (12)

We can update V(i) in Equation (12) referring to the update strategy in semi-NMF, since the
semi-NMF and subspace learning processes are isolated from each other. The partial derivation of
L(V(i)) with respect to V(i) can be obtained as:

∂L(V(i))

∂V(i)
= V(i)(I− Z(i) − Z(i)> + Z(i)Z(i)>) + U(i)>U(i)V(i) −U(i)>X(i). (13)

According to the optimization of semi-NMF and the KKT condition, we can get

(V(i)P(i) + U(i)>U(i)V(i) −U(i)>X(i))j,kV(i)
j,k = 0,

where P(i) = I−Z(i)−Z(i)> +Z(i)Z(i)> . Note that U(i)>U(i) = (U(i)>U(i))+− (U(i)>U(i))−. Based on
this, we can achieve the updating rule for V(i):

V(i)
j,k ← V(i)

j,k

√√√√√ (V(i)(P(i))−)j,k + [(U(i)>U(i))−V(i)]j,k + (U(i)>X(i))+j,k

(V(i)(P(i))+)j,k + [(U(i)>U(i))+V(i)]j,k + (U(i)>X(i))−j,k

. (14)

4.2.3. Update Z(i)

When U(i), V(i), αi and Z∗ fixed, the optimization for Z(i) can be simplified as:

min
Z(i)

m

∑
i=1

∥∥∥V(i) −V(i)Z(i)
∥∥∥2

F
+ λ1

∥∥∥αiZ(i) −O(i)Z∗O(i)>
∥∥∥2

F

s.t. 0 ≤ Z(i)
j,k ≤ 1, Z(i)>1 = 1.

(15)

Denoting H(i) = O(i)Z∗O(i)> , we can obtain the following equivalent question

min
Z(i)

m

∑
i=1

Tr(Z(i)>(V(i)>V(i) + λ1α2
i I)Z(i) − 2Z(i)>(V(i)>V(i) + λ1αiH(i))

+V(i)>V(i) + λ1H(i)>H(i)>).

(16)

Setting the derivative with respect to Z(i)
:,j to zero, we can get

∂L(Z(i)
:,j )

∂Z(i)
:,j

=
m

∑
i=1

ni

∑
j=1

Q(i)Z(i)
:,j + Q(i)>Z(i)

:,j − p(i) = 0,
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where Q(i) = V(i)>V(i) + λ1α2
i I and p(i) = 2(V(i)>V(i)):,j + 2λ1αiH

(i)
:,j . For each view, we can obtain

the following closed-form solution

Z(i)
:,j = (Q(i) + Q(i)>)−1p(i) (17)

4.2.4. Update αi

By fixing U(i), V(i), Z(i) and Z∗ and removing other terms, the optimization for αi can be transformed
into solving Equation (18).

min
αi

m

∑
i=1

∥∥∥αiZ(i) −O(i)Z∗O(i)>
∥∥∥2

F
s.t.

m

∑
i=1

αi = 1, αi ≥ 0 (18)

Note that H(i) = O(i)Z∗O(i)> . For each view, we can obtain the following Lagrange function:

L(αi) = α2
i Tr(Z(i)>Z(i))− 2αiTr(Z(i)>H(i)) + Tr(H(i)>H(i)) + γ(

m

∑
i=1

αi − 1), (19)

where γ is the Lagrange multipliers. Setting the derivative of L(αi) w.r.t. αi to zero, we can obtain:

αi =
2Tr(Z(i)>H(i))− γ

2Tr(Z(i)>Z(i))
(20)

According to the constraint ∑m
i=1 αi = 1, we can compute γ and further get each αi.

4.2.5. Update Z∗

With U(i), V(i), Z(i) and αi fixed, we need to minimize the following objective for Z(i).

min
Z∗

m

∑
i=1

λ1

∥∥∥αiZ(i) −O(i)Z∗O(i)>
∥∥∥2

F
+ λ2 ‖Z∗‖1 (21)

We can get the equivalent element-wise equation:

min
Z∗

λ1

∥∥∥∥∥ r

∑
i=1

αiZ
(i)
j,p − rZ∗k,q

∥∥∥∥∥
2

+ λ2|Z∗k,q| (22)

Note that j, p differ in different views. r is the count of views in which samples j and p exist
simultaneously. If O(i)

j,k = 1 and O(i)
p,q = 1, the elements Z∗k,q in Z∗ are composed of the weighted sum of

the corresponding instance Z(i)
j,p in view i. Specifically, Equation (22) obtains a unique solution:

Z∗k,q =



2λ1r
r
∑

i=1
αiZ

(i)
j,p−λ2

2λ1r2 , if
r
∑

i=1
αiZ

(i)
j,p > λ2

2λ1r

2λ1r
r
∑

i=1
αiZ

(i)
j,p+λ2

2λ1r2 , if
r
∑

i=1
αiZ

(i)
j,p < −λ2

2λ1r

0, otherwise

(23)

As can be seen in Equation (23), the solution of optimal Z∗ is a weighted combination of
self-representation graph over the view which corresponding samples are visible. Moreover, the
noise and outliers will be given a very small value to make the Z∗ sparse. Therefore, we can get a
robust and complete graph revealing all of the relationships of the samples.
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4.3. Convergence and Computational Complexity

We end up in this section by analyzing the convergence analysis and computational complexity
of our proposed method.

Convergence analysis: We first analyze the convergence of the proposed method. Algorithm 1 is
a convex problem during the updating of each variable. Each sub-problem obtains a global optimum
solution and the value of the objective function is non-increasing until converges. Experiment results
in the next section demonstrate this in practice.

Computational complexity analysis: With the optimization process outlined in Algorithm 1, the
total time complexity consists of five parts referring to the alternate steps. For incomplete multi-view
setting, dimensionality and the number of complete samples varies across different views. With
notations in the following, the first stage for computing U(i) needs O(dinik + nik2 + k3 + dik2) for
the i-th view. The time cost of d× n dimensional matrix X multiplying n× k dimensional matrix V>

is O(dinik). Similarly, the time costs of VV> and (VV>)−1 are O(nik2) and O(k3), respectively. At
last, the result of XV> times (VV>)−1 costs O(dik2). Therefore the total time cost of updating U(i) is
O(dinik + nik2 + k3 + dik2) for each view. Similarly to updating U(i), the time cost of updating V(i) is
O(q(kn2

i + dik2 + k2ni + kdini)), where q is the number of iterations. The time cost of updating Z(i) is
O(ni(nik2 + n3

i )). The time cost of updating αi is O(mn3
i ). At last, solving Z∗ acquires O(mn2

i ). After
all, the time complexity of our algorithm is O(mni(nik2 + n3

i + ni + nik)).

Algorithm 1: AWGF-IMSC

Input: Multi-view data with m views {X(i)}m
i=1, index matrix {O(i)}m

i=1, the number of cluster
k, hyper-parameters λ1 and λ2.

Initialize: Initialize V(i) ∈ Rk×ni based on preliminary k-means. If sample i belongs to cluster
k, the corresponding element in V(i) equals to 1 else 0. Initialize Z(i) with the k-nearest
neighbors on visible data points in each view. Initialize αi with 1

m , where m is the number of
views. Initialize Z∗ with the average of Z(i).

while not convergence do
Update U(i) by Equation (11);
Update V(i) by solving Equation (14);
Update Z(i) by Equation (17);
Update αi by Equation (20);
Update Z∗ by Equation (23);

end
Output: Z∗

Performing spectral clustering on Z∗ to get the clustering results.

5. Experiment

5.1. Datasets

To demonstrate the effectiveness of our proposed algorithm AWGF_IMSC, we do comparisons
with six baseline methods on four benchmark datasets. The statistical information of the datasets is
displayed in Table 1. Detailed introductions are as follows:

• BUAA-visnir face database (BUAA) [49]. The dataset BUAA used in this paper contains 1350
instances of 150 categories. Each instance has visible images (VIS) and near infrared images (NIR),
which naturally form a two-view dataset. Both VIS and NIR images are 640×480 pixels. Then,
they are resized into 10× 10 matrix and vectorized into 100-dimensional features.

• Caltech7 [50]. The Caltech7 dataset is a subset of the Caltech101 dataset, containing seven categories
(Face, Motorbikes, Dolla-Bill, Garfield, Snoopy, Stop-Sign and Windsorchair) and 1474 instances.
The original images of dataset Caltech7 differ in size. We follow the work in [48], selecting two of
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five given features as the multi-view dataset. The selected two views refer to 512 dimensional
GIST features [51] and 928 dimensional local binary patterns(LBP) features [51].

• One-hundred plant species leaves dataset (100Leaves) [52]. The 100Leaves dataset contains
1600 instances from 100 categories. The original images of 100Leaves differ in size, too. Shape
descriptor, fine scale margin and texture histogram features constitute three-views to depict
samples from different perspectives.

• Mfeat handwritten digit dataset (Mfeat) [53]. This dataset contains 2000 samples. The size of
the original images of dataset Mfeat is 891 × 702 pixels. The public multi-view dataset of it has
six views. In our experiments, we select 76-dimensional features of Fourier coefficients of the
character shapes and 240-dimensional features of pixel averages.

Table 1. Statistics of the datasets.

Samples Views Clusters Feature

BUAA 1350 2 150 100 100
Caltech7 1474 2 7 512 928

100Leaves 1600 3 100 64 64 64
Mfeat 2000 2 10 76 240

As shown in Figure 2, we randomly select six pictures of different categories from four original
datasets for display.

Figure 2. Sample images of the four datasets. Row from top to bottom represents images from BUAA,
Caltech7, 100Leaves and Mfeat, respectively.

5.2. Baselines

We conduct extensive experiments, comparing with several state-of-the-art incomplete multi-view
clustering methods. Brief introductions are given below.

• Best single view (BSV). BSV first fills the missing samples with the average feature values of its view.
The affinity matrices can be constructed by Gaussian kernel. Then, we perform spectral clustering
algorithm on the similarity matrix of each view and report the best clustering performance.
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• Partial multi-view clustering (PVC) [35]. This method supposes that the instances available in both
views should have a common representation. The view-specific instances which are missing in
another view should maintain the specific information. Based on the NMF, this method integrates
the common and view-specific representations in the latent space to form a unified representation.

• Multiple incomplete view clustering via weighted non-negative matrix factorization with `2,1

regularization (MIC) [38]. This paper first fills the missing instances with an average value of
features and then learns a `2,1 regularized latent subspace by weighted NMF.

• Incomplete multi-modal visual data grouping (IMG) [36]. IMG proposes to use the latent representation
to generate a complete graph, which establishes a connection between missing data from different views.

• Doubly aligned incomplete multi-view clustering (DAIMC) [37]. The proposed method first aligns
the samples into a common representation by semi-NMF and then aligns the base matrices with
the help of `2,1 regularized regression modal.

• Incomplete multi-view spectral clustering with adaptive graph learning (INMF-AGL) [48] induces
a co-regularization term to learn the common representation, which integrates the graph learning
and spectral clustering.

For the compared methods, we run their demo with the suggest or default parameters and repeat
five times to obtain average results. Note that the PVC and IMG methods can only deal with the
two-view scenarios. In our experiments, we combine two different views and report the best result.

Following most existing works, we utilize accuracy (ACC) and normalized mutual information
(NMI) to measure the clustering results; higher values representing better clustering performance.
Then we give the definition of the two metrics. Denoting true positive (TP), false positive (FP), false
negative (FN) and true negative (TN), we can obtain the ACC and NMI definitions as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (24)

indicating the percentage of correct predicted results in the total samples.
NMI quantifies the amount of information contained in a random variable about another random

variable. For clarity, the expression can be formulated as:

NMI(X, Y) = 2
I(X, Y)

H(X) + H(Y)
, (25)

where mutual information I(X, Y) is ∑x ∑y p(x, y) log p(x,y)
p(x)p(y) , p(x, y) is the joint probability distribution

of X and Y, p(x) is the marginal probability distribution of X. H(X) = −∑i p(xi) log p(xi) is the
information entropy, regarded as the uncertainty of random variables.

5.3. Experiment Setting

In our experiments, we generate incomplete data from complete multi-view datasets in the way of
One-complete, which means that we randomly select one of the views to be complete. The rest of the views
suffer different incomplete ratio (IR) from 10%, 20%, 30%, 40%, 50%, 60%, 70%. For the two-view datasets
BUAA, Caltech7 and Mfeat, we randomly select one view as the complete view. The incomplete case
occurs in the rest view with randomly removing 10–70% samples. For more than two-view occasions,
one view is chosen randomly and the rest views suffer 10–70% missing. The datasets used in this paper
can be found in our Github (https://github.com/Jeaninezpp/Incomplete-multi-view-datasets). In our
experiments, we perform our proposed method five times as the compared method for fairness. Our code
is available at https://github.com/Jeaninezpp/AWGF-code.

5.4. Experiment Results and Analysis

Experiment results on different datasets of various compared method are enumerated in Tables 2–5.
These four tables present the ACC results of the above algorithms on four benchmark datasets. Each row
shows the accuracy of compared methods under a certain incomplete ratio. We highlight the best results

https://github.com/Jeaninezpp/Incomplete-multi-view-datasets
https://github.com/Jeaninezpp/AWGF-code
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in bold. Each column represents the evolution of the accuracy of the corresponding method as the
incomplete ratio increase. Under each incomplete ratio, we can get the sequence number by sorting
the accuracy from high to low. The sequence number is regarded as the rank of the algorithms under a
certain incomplete ratio. Then, we can obtain the average rank by taking the average of the ranks over
each algorithm. The average rank illustrates the robustness of the method in terms of incomplete ratio.

Table 2. ACCs and average ranks on Caltech7 under different incomplete ratios. Bold numbers denote
the best result.

IR\Method BSV MIC IMG DAIMC INMF_AGL Ours

10% 0.3328 0.4007 0.5189 0.4105 0.5263 0.7605
20% 0.3145 0.3886 0.5027 0.3969 0.5794 0.7104
30% 0.3436 0.3205 0.4837 0.4122 0.5791 0.7293
40% 0.4139 0.3366 0.5080 0.3423 0.6007 0.6981
50% 0.4861 0.3493 0.4290 0.3550 0.5702 0.6750
60% 0.5245 0.3446 0.4943 0.4155 0.5874 0.6954
70% 0.4324 0.3539 0.4837 0.4109 0.5799 0.6942

Average Rank 4.43 5.71 3.29 4.57 2.00 1.00

Table 3. ACCs and average ranks on BUAA under different incomplete ratios. Bold numbers denote
the best result.

IR\Method BSV MIC IMG DAIMC INMF_AGL Ours

10% 0.2964 0.0193 0.3424 0.3203 0.5652 0.6446
20% 0.2997 0.0193 0.3424 0.2775 0.5637 0.6395
30% 0.3006 0.0193 0.3424 0.2341 0.5566 0.6284
40% 0.2997 0.0193 0.3424 0.2336 0.5505 0.6258
50% 0.2965 0.0193 0.3424 0.2373 0.4730 0.6223
60% 0.2975 0.0193 0.3424 0.2413 0.5293 0.6217
70% 0.2979 0.0193 0.3424 0.2596 0.5410 0.6110

Average Rank 4.14 6.00 3.00 4.86 2.00 1.00

Table 4. ACCs and average ranks on 100Leaves under different incomplete ratios. Bold numbers
denote the best result.

IR\Method BSV MIC IMG DAIMC INMF_AGL Ours

10% 0.1069 0.6208 0.5661 0.6628 0.8223 0.8433
20% 0.1064 0.5768 0.5143 0.5750 0.7835 0.8104
30% 0.1060 0.5234 0.4607 0.4740 0.7529 0.7776
40% 0.1056 0.4744 0.4302 0.4370 0.7026 0.7291
50% 0.1075 0.4665 0.4001 0.3068 0.6551 0.7028
60% 0.1065 0.4449 0.3668 0.3405 0.6316 0.6478
70% 0.1057 0.4261 0.3740 0.3875 0.5893 0.6194

Average Rank 6.00 3.14 4.71 4.14 2.00 1.00

Table 5. ACCs and average ranks on Mfeat under different incomplete ratios. Bold numbers denote
the best result.

IR\Method BSV MIC IMG DAIMC INMF_AGL Ours

10% 0.1520 0.6477 0.5442 0.8670 0.8650 0.8100
20% 0.1484 0.5721 0.5004 0.7151 0.8415 0.7866
30% 0.1471 0.5220 0.5133 0.5737 0.8177 0.7995
40% 0.1497 0.4539 0.4554 0.5042 0.8148 0.7864
50% 0.1458 0.3640 0.4037 0.5423 0.7989 0.7680
60% 0.1524 0.3583 0.3424 0.5819 0.7214 0.7515
70% 0.1476 0.3447 0.3424 0.6446 0.7027 0.7256

Average Rank 6.00 4.29 4.71 2.71 1.43 1.86
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Furthermore, we depict the NMI metric in Figure 3 with line charts. Based on these results, we
have the following observations:

• Compared with the proposed method, the BSV method yields worse clustering performance.
This is mainly because directly filling the missing instances with the average features will lead
them to be clustered into the same group. The weighted NMF methods DAIMC and MIC perform
better than BSV at a low missing rate since the NMF-based methods learn a shared representation
to exploit the complementary information across views. Besides, the weighted manner reduces
the negative impact of the missing instances. However, with the increasing incomplete ratio,
these two methods suffer a sharp decline, especially apparent in Mfeat dataset. Methods like
IMG and INMF_AGL involving the graph construction perform better than them. Our proposed
method integrates the advantages of NMF-based and graph-based methods, adaptively fusing
the graph learned from each embedding space. Therefore, our AWGF_IMSC method reaches the
best clustering performance in most cases.

• Comparing with the INMF_AGL [48], our proposed method consistently further improves the
clustering performance and achieves better results among the benchmark datasets. In addition to
the cases on Mfeat, the INMF_AGL method performs higher accuracy than AWGF_IMSC under
the 20–50% missing rate. However, our performance exceeds it under the incomplete ratio in 60%
and 70%. Although both of INMF_AGL and our AWGF_IMSC adopt subspace clustering to build
graph structure in each view, the clustering results demonstrate the effectiveness of graph fusion
instead of indicator fusion in INMF_AGL.

• AWGF-IMSC shows clear advantages over other compared baselines under various incomplete
ratios, with three best and one second-best results out of the total four datasets. For example,
on the BUAA dataset (Table 3), our method transcends the second best method by 7.94%, 7.58%,
7.18%, 7.53%, 14.93%, 9.24% and 7%, respectively. More significant improvements can be seen on
dataset Caltech7. In Table 2, the ACCs of the proposed method are 23.42% , 13.10%, 15.02%, 9.74%,
10.48%, 10.8% and 11.43% higher than the second best INMF_AGL method. These significant
results verify the effectiveness of the proposed adaptive weighted graph-based fusion learning
for incomplete multi-view clustering. Our method achieves the best average rank in Caltech7,
BUAA and 100Leaves. In Mfeat, the average rank of the proposed method is second best, which
is only 0.43 more than the best, but 0.85 less than the third.

• As shown in Figure 3, we can also observe that the proposed algorithm outperforms other methods
on all of the datasets under various incomplete ratio. Besides, our method appears a relatively
stable trend as the missing rate increases. Moreover, the abnormal phenomenon of BSV in dataset
Caltech7 (Figure 3a) maybe because the preserved complete view has an excellent structure when
generating large missing datasets. Therefore, the results of the BSV will be outstanding. Other
methods are affected by the negative impact of missing samples and thus produce a lower effect
than BSV, while our method is still superior to all compared methods by a more significant
proportion, further illustrating the effectiveness and superiority of the proposed method.
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Figure 3. NMI results with different incomplete ratios on four incomplete datasets.
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5.5. Analysis of the Parameter Sensitivity

In this section, we analyze the impact of the hyper-meters λ1 and λ2 in AWGF-IMSC on clustering
performance. The parameters are chosen ranging from

[
10−3, 10−2, · · · , 103] by grid search. Figures 4

and 5 plot the NMI results by varying λ1 and λ2 in a large range on BUAA, Caltech7, 100Leaves
and Mfeat.

We have the following observations from Figures 4 and 5: (i) All the two hyper-parameters are
effective in improving the clustering performance; (ii) AWGF-IMSC is practically stable against these
parameters that it achieves competitive performance in a wide range of parameter settings in a low
missing rate; (iii) With the incomplete ratio increasing, the combinations of a relatively smaller λ1

and a more prominent λ2 tend to achieve better performance. The reason is that the λ2 controls the
impact of the sparse regularizer of the complete graph. Imposing sparseness requirements on the
graph within a specific range will filter out the noise in the graph and the inconsistency between the
views. (iv) For different datasets, we can conclude that most of the datasets are relatively stable when
λ1 ∈ {1e− 3, 1e− 2, 1e− 1}, λ2 ∈ {10, 100, 1000}.
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Figure 4. Parameter study on four incomplete datasets. Pictures depict the diversification of NMI
under different parameter combinations in the condition of missing 10% instances.
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Figure 5. The influence of parameters λ1 and λ2 on NMI when 30% instances are missing on
four datasets.

5.6. Convergence Analysis

Our algorithm is theoretically guaranteed to converge to a local minimum, as illustrated in the
optimization part. For the convergence analysis, we conduct experiments on the four datasets with all
incomplete ratios and all suggest parameter scope. We randomly select from each dataset and draw
the evolution of the objective value, as shown in Figure 6. In the above experiments, we observe that
our algorithm’s objective values monotonically decrease at each iteration and usually converge in less
than 20 iterations. These results verify our proposed algorithm’s convergence.
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Figure 6. The convergence curves of the objective values on four datasets.

6. Conclusions

This article proposes a novel incomplete multi-view clustering method to fuse the local-structure
contained graph with adaptive view-importance learning. We incorporate representation learning
and incomplete graph fusion into a unified framework, whereas two processes can negotiate with
each other, serving for graph learning tasks. A sparse regularization is imposed on the complete
graph to do it more robustly to the view-inconsistency. Moreover, the importance of different views is
automatically learned, further guiding the construction of the complete graph. We conduct experiments
to illustrate the effectiveness and superiority of the proposed method. Some recent works utilize deep
neural networks, such as GAN (generative adversarial network), to generate missing features to solve
incomplete multi-view clustering problems. The utilization of neural networks to handle multi-view
clustering and incomplete multi-view clustering will be advanced considerations in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

AWGF-IMSC Adaptive weighted graph fusion incomplete multi-view subspace clustering
MVC Multi-view clustering
NMF Non-negative matrix factorization
BUAA BUAA-visnir face database
100Leaves One-hundred plant species leaves dataset
Mfeat Mfeat handwritten digit dataset
VIS Visual image
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NIR Near infrared image
LBP Local binary patterns
IR Incomplete ratio
ACC Accuracy
NMI Normalized mutual information
TP, FP, FN, TN True positive, false positive, false negative, true negative
BSV Best single view
PVC Partial multi-view clustering

MIC
Multiple incomplete view clustering via weighted non-negative matrix factorization with `2,1
regularization

IMG Incomplete multi-modal visual data grouping
DAIMC Doubly aligned incomplete multi-view clustering
INMF-AGL Incomplete multiview spectral clustering with adaptive graph learning
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